fitgrid.fake_data module¶
- fitgrid.fake_data.generate(n_epochs=10, n_samples=100, n_categories=2, n_channels=32, time='time', epoch_id='epoch_id', seed=None, return_type='epochs')[source]¶
Return Epochs object or pandas.DataFrame with fake EEG data.
- Parameters
n_epochs (int) – number of epochs per category to be generated
n_samples (int) – number of samples in a single epochs
n_categories (int) – number of levels of the categorical variable
n_channels (int) – number of time series representing EEG channels
time (str, defaults to defaults.TIME) – time column name
epoch_id (str, defaults to defaults.EPOCH_ID) – epoch identifier column name
seed=None ({None, int, array_like}, optional) – Random number generation seed. Default=None lets data vary from run to run. Set seed to a 32-bit unsigned integer to generate the same fake data run to run. See numpy.random.RandomState for details.
return_type (str {epochs, dataframe}) – return fitgrid.Epochs or the fitgrid.Epochs.table dataframe
- Returns
epochs – Epochs object or just the data
- Return type
fitgrid.Epochs or pandas.DataFrame
Notes
n_epochs
andn_categories
interact in the sense thatn_epochs
epochs are generated for each level of the categorical variable. In other words, the true number of epochs in the generated data is equal ton_epochs
*n_categories
.For example, the default
n_epochs = 10
andn_categories = 2
produces 20 epochs, 10 per category.