Source code for fitgrid.fake_data

import warnings
import numpy as np
import pandas as pd
from .epochs import Epochs
from . import defaults

_TIME = defaults.TIME
_EPOCH_ID = defaults.EPOCH_ID


[docs]def generate( n_epochs=10, n_samples=100, n_categories=2, n_channels=32, time=_TIME, epoch_id=_EPOCH_ID, seed=None, return_type="epochs", ): """Return Epochs object or pandas.DataFrame with fake EEG data. Parameters ---------- n_epochs : int number of epochs per category to be generated n_samples : int number of samples in a single epochs n_categories : int number of levels of the categorical variable n_channels : int number of time series representing EEG channels time : str, defaults to defaults.TIME time column name epoch_id : str, defaults to defaults.EPOCH_ID epoch identifier column name seed=None : {None, int, array_like}, optional Random number generation seed. Default=None lets data vary from run to run. Set `seed` to a 32-bit unsigned integer to generate the same fake data run to run. See numpy.random.RandomState for details. return_type : str {epochs, dataframe} return fitgrid.Epochs or the fitgrid.Epochs.table dataframe Returns ------- epochs : fitgrid.Epochs or pandas.DataFrame Epochs object or just the data Notes ----- ``n_epochs`` and ``n_categories`` interact in the sense that ``n_epochs`` epochs are generated for each level of the categorical variable. In other words, the true number of epochs in the generated data is equal to ``n_epochs`` * ``n_categories``. For example, the default ``n_epochs = 10`` and ``n_categories = 2`` produces 20 epochs, 10 per category. """ df, channels = _generate( n_epochs, n_samples, n_categories, n_channels, time, epoch_id, seed ) epochs_fg = Epochs(df, time=time, epoch_id=epoch_id, channels=channels) if return_type == "epochs": return epochs_fg elif return_type == "dataframe": return epochs_fg.table.reset_index() else: raise ValueError("return_type must be 'epochs' or 'dataframe'")
def _generate( n_epochs, n_samples, n_categories, n_channels, time, epoch_id, seed=None ): """Return Pandas DataFrame with fake EEG data, and a list of channels.""" if seed is not None: np.random.seed(seed) total = n_epochs * n_samples * n_categories categories = np.array([f'cat{i}' for i in range(n_categories)]) indices = { epoch_id: np.repeat(np.arange(n_epochs * n_categories), n_samples), time: np.tile(np.arange(n_samples), n_epochs * n_categories), } predictors = { 'categorical': np.tile(np.repeat(categories, n_samples), n_epochs), 'continuous': np.random.uniform(size=total), } channels = [f'channel{i}' for i in range(n_channels)] eeg = { channel: np.random.normal(loc=0, scale=30, size=total) for channel in channels } data = {**indices, **predictors, **eeg} df = pd.DataFrame(data).set_index([epoch_id, time]).sort_index() return df, channels