Bibliography¶
Research reports using fitgrid¶
- TroUrbKut2020
Troyer, M., Urbach, T.P., & Kutas, M. (2020). Toward dissociating general reading experience and domain-specific knowledge sources during RSVP reading: An exploratory rERP analysis. Virtual poster presentation, Society for the Neurobiology of Language Annual Meeting, October 2020. https://doi.org/10.17605/OSF.IO/YNV9K
- UrbachEtAl2020
Urbach, T. P., DeLong, K. A., Chan, W-H., & Kutas, M. (2020). An exploratory data analysis of word form prediction during word-by-word reading. Proceedings of the National Academy of Sciences, 201922028. https://doi.org/10.1073/pnas.1922028117
References¶
- BatesEtAl2015
Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi:10.18637/jss.v067.i01.
- Berger1930
Berger, H. (1930). Electroencephalogram of man (P. Gloor, Trans.). In P. Gloor (Ed.), Hans Berger on the Electroencephalogram of Man. The Fourteen Original Reports on the Human Electroencephalogram. 1969. Electroencephalography and Clinical Neurophysiology, supplement 28. New York: Elsevier.
- BurAnd2004
Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference - understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261-304. https://doi:10.1177/0049124104268644
- Dawson1951
Dawson, G. D. (1951). A summation technique for detecting small signals in a large irregular background. Journal of Physiology, 115(1), P2-P3.
- Dawson1954
Dawson, G. D. (1954). A summation technique for the detection of small evoked potentials. Electroencephalography and Clinical Neurophysiology, 6(1), 65-84. https://doi:10.1016/0013-4694(54)90007-3
- Jolly2018
Jolly, (2018). Pymer4: Connecting R and Python for Linear Mixed Modeling. Journal of Open Source Software, 3(31), 862, https://doi.org/10.21105/joss.00862
- KuzBroChr2017
Kuznetsova A, Brockhoff PB, Christensen RHB (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1?26. doi: 10.18637/jss.v082.i13.
- LinCha1969
Lindzen, R. S., & Chapman, S. (1969). Atmospheric tides. Space science reviews, 10(1), 3-188.
- LucKap2011
Luck, S. J., & Kappenman, E. S. (Eds.). (2011). The Oxford handbook of event-related potential components. Oxford University Press. https://doi:10.1093/oxfordhb/9780195374148.001.0001
- NOS-CO-OPS2
Computational Technniques for tidal datums handbook. N0AA Special Publication NOS CO-OPS2, National Oceanic and Atmospheric Administration, National Ocean Service, Center for Operational Oceanographic Products and Services. URL: https://tidesandcurrents.noaa.gov/publications/Computational_Techniques_for_Tidal_Datums_handbook.pdf.
- NieGroPel2012
Nieuwenhuis, R., Grotenhuis, M., & Pelzer, B. (2012). influence.ME: tools for detecting influential data in mixed effects models. R journal, 4(2), 38-47.
- R2020
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: <https://www.R-project.org>.
- SeaSkiPer2010
Seabold, Skipper, and Josef Perktold. statsmodels: Econometric and statistical modeling with python. Proceedings of the 9th Python in Science Conference. 2010. Documentation: <https://www.statsmodels.org>.
- SmiKut2015
Smith, N. J., & Kutas, M. (2015). Regression-based estimation of ERP waveforms: I. The rERP framework. Psychophysiology. doi:10.1111/psyp.12317. [PubMed open access]
- Smith2020
Smith, N. J., patsy - Describing statistical models in Python. Documentation: <https://patsy.readthedocs.io>.