Source code for fitgrid.fitgrid

import numpy as np
import pandas as pd
import pickle
from functools import lru_cache
import warnings

from .errors import FitGridError
from . import tools


[docs]class FitGrid: """Hold rERP fit objects. FitGrid should not be created directly, the right way to build it is to start with an Epochs object and pass it to a function like `fitgrid.lm`. Parameters ---------- _grid : Pandas DataFrame Pandas DataFrame of fit objects epochs_index : pandas Index index containing epoch ids time : str time column name Returns ------- grid: FitGrid FitGrid object Notes ----- Slicing FitGrids is a little different than slicing Pandas DataFrames. For instance, we require that the keys in a list used to slice a FitGrid on time or channels be unique. The following Pandas quirk is inherited by FitGrids: slicing using a list where some keys are present but some are missing from a grid succeeds silently and creates columns with the missing keys as names. For example, if you have a grid with columns 'channel1', 'channel2' and you slice: grid[:, ['channel1', 'blah']] this returns a new grid with columns 'channel1', 'blah' where column 'blah' consists of NaN's. Since version 21.0 of Pandas this throws a warning and should in future be replaced with a KeyError. """ def __init__(self, _grid, epoch_index, time): # check no duplicate column names names = list(_grid.columns) deduped_names = tools.deduplicate_list(names) if deduped_names != names: raise FitGridError('Duplicate column names not allowed.') self._grid = _grid self.epoch_index = epoch_index self.time = time self.tester = _grid.iloc[0, 0] self.channels = list(_grid.columns) def __getitem__(self, slicer): """Slice grid on time and channels, return new grid with that shape. The intended way to slice a FitGrid is to always slice on both time and channels, allowing wildcard colons: `grid[:, ['channel1', 'channel2']]` or `grid[:, :]` or `grid[25:-25, 'channel2'] """ if ( not isinstance(slicer, tuple) or not hasattr(slicer, '__len__') or len(slicer) != 2 ): raise FitGridError('Must slice on time and channels.') # now we can unpack time, channels = slicer def check_slicer_component(component): if isinstance(component, slice): return component elif isinstance(component, list): # deduplicate and warn if duplicates found deduped_component = tools.deduplicate_list(component) if deduped_component != component: msg = f'Slicer {component} contained duplicates, ' msg += f'slicing instead on deduped: {deduped_component}.' warnings.warn(UserWarning(msg)) return deduped_component else: # wrap in list to always get a DataFrame in return on slicing # otherwise we might get a scalar or a pandas Series, # which can't be used to create a FitGrid object return [component] time = check_slicer_component(time) channels = check_slicer_component(channels) subgrid = self._grid.loc[time, channels].copy() return self.__class__(subgrid, self.epoch_index, self.time) @lru_cache() def __getattr__(self, name): """Broadcast attribute extraction in the grid. This is the method that gets called when an attribute is requested that FitGrid does not have. We then go and check if the tester has it, and broadcast if it does. """ if not hasattr(self.tester, name): raise AttributeError(f'No such attribute: {name}.') temp = self._grid.applymap(lambda x: getattr(x, name)) return self._expand(temp) def __call__(self, *args, **kwargs): """Broadcast method calling in the grid. This is the method that gets called when the grid is called as if it were a method. """ if not callable(self.tester): raise FitGridError( f'This grid is not callable, ' f'current type is {type(self.tester)}' ) # if we are not callable, we'll get an appropriate exception temp = self._grid.applymap(lambda x: x(*args, **kwargs)) return self._expand(temp) def __dir__(self): # the result of this call is what shows up for tab completion # so we add the cell attributes: cell_attrs = [ item for item in dir(self.tester) if not item.startswith('__') ] # and the attributes of the grid itself: grid_attrs = [self.save.__name__] return cell_attrs + grid_attrs def __repr__(self): samples, chans = self._grid.shape classname = self.__class__.__name__ return f'{samples} by {chans} {classname} of type {type(self.tester)}.'
[docs] def save(self, filename): """Save FitGrid object to file (reload with ``fitgrid.load_grid``). Parameters ---------- filename : str file name to use """ with open(filename, 'wb') as file: kernel = self._grid, self.epoch_index, self.time pickle.dump(kernel, file, protocol=pickle.HIGHEST_PROTOCOL)
[docs] def expand_series_or_df(self, temp): """Expand a DataFrame that has Series or DataFrames for values.""" columns = ( pd.concat(temp[channel].tolist(), keys=temp.index) for channel in temp ) # concatenate columns, channel names are top level columns indices result = pd.concat(columns, axis=1, keys=temp.columns) # stack to achieve long form if columns have multiple levels if isinstance(result.columns, pd.core.indexes.multi.MultiIndex): return result.stack() return result
def _expand(self, temp): """Expand the values in the grid if possible, return frame or grid.""" tester = temp.iloc[0, 0] # no processing needed if np.isscalar(tester): return temp # familiar types, expand them if isinstance(tester, pd.Series) or isinstance(tester, pd.DataFrame): # want single index level # can get more if original DataFrame had a multiindex # in Epochs we ensure that only epoch_id is in the index for # groupby if tester.index.nlevels > 1: raise NotImplementedError( f'index should have one level, have {tester.index.nlevels}' f' instead: {tester.index.names}' ) return self.expand_series_or_df(temp) # array-like, try converting to array and then Series/DataFrame if isinstance(tester, tuple) or isinstance(tester, list): array_form = np.array( tester, dtype="O" ) # deprecated without dtype="O" if array_form.ndim == 1: # Tidy 1-D are Series. Untidy 1-D may be broadcastable # into a tidy DataFrame def series_fun(x): return pd.Series(np.array(x)) # default if array_form.dtype != np.dtype("object"): pd_fun = series_fun # tidy else: try: # broadcastable to DataFrame? def df_fun(x): return pd.DataFrame(np.broadcast(*x)).T pd_fun = df_fun pd_fun(tester) except Exception: # oh well, fall back to Series pd_fun = series_fun temp = temp.applymap(lambda x: pd_fun(x)) elif array_form.ndim == 2: temp = temp.applymap(lambda x: pd.DataFrame(np.array(x))) else: raise NotImplementedError( 'Cannot use elements with dim > 2,' f'element has ndim = {array_form.ndim}.' ) temp_expanded = self.expand_series_or_df(temp) temp_epoch_index = self.add_epoch_index(temp_expanded) return temp_epoch_index # array, try converting to Series/DataFrame if isinstance(tester, np.ndarray): if tester.ndim == 1: temp = temp.applymap(lambda x: pd.Series(x)) elif tester.ndim == 2: temp = temp.applymap(lambda x: pd.DataFrame(x)) else: raise NotImplementedError( 'Cannot use elements with dim > 2,' f'element has ndim = {tester.ndim}.' ) temp_expanded = self.expand_series_or_df(temp) temp_epoch_index = self.add_epoch_index(temp_expanded) return temp_epoch_index # catchall for all types we don't handle explicitly # statsmodels objects, dicts, methods all go here return FitGrid(temp, self.epoch_index, self.time)
[docs] def add_epoch_index(self, temp): """We assume that temp is in long form, the columns are channels, and the first index level is time.""" # first index level is time assert temp.index.names[0] == self.time # temp should be long form, columns have single level (channels # hopefully) assert not isinstance(temp.columns, pd.core.indexes.multi.MultiIndex) # we can only handle 2- or 3-dimensional assert temp.index.nlevels in (2, 3) for i in range(1, temp.index.nlevels): level = temp.index.levels[i] # if a level looks like it was automatically created by Pandas, # we replace it with the epoch_index if ( isinstance(level, pd.RangeIndex) and len(level) == len(self.epoch_index) and level.start == 0 and level.step == 1 and level.stop == len(self.epoch_index) ): temp.index.set_levels(self.epoch_index, level=i, inplace=True) temp.index.rename(self.epoch_index.name, level=i, inplace=True) return temp
[docs]class LMFitGrid(FitGrid): def __dir__(self): lmfitgrid_attrs = [ self.plot_betas.__name__, self.plot_adj_rsquared.__name__, self.influential_epochs.__name__, ] return super().__dir__() + lmfitgrid_attrs
[docs] def plot_betas(self, legend_on_bottom=False): """Plot betas of the model, one plot per channel, overplotting betas. Parameters ---------- legend_on_bottom : bool, defaults to False set to True to plot single legend below all channel plots Returns ------- fig : matplotlib.figure.Figure figure containing plots axes : numpy.ndarray of matplotlib.axes.Axes axes objects """ import matplotlib.pyplot as plt with plt.rc_context({'font.size': 14}): params = self.params.unstack() channels, betas = params.columns.levels figsize = (16, 4 * len(channels)) n_plots = len(channels) + 1 if legend_on_bottom else len(channels) fig, axes = plt.subplots( nrows=n_plots, figsize=figsize, sharey=True ) # wrap in list if single axis to allow for zipping later if not isinstance(axes, np.ndarray): axes = [axes] if legend_on_bottom: legend_ax = axes[-1] channel_axes = axes[:-1] else: channel_axes = axes for ax, chan in zip(channel_axes, channels): for beta in params[chan]: ax.plot(params[chan][beta], label=beta) ax.set(ylabel=chan, xlabel=params.index.name) if not legend_on_bottom: ax.legend( loc='upper center', ncol=len(params[chan]), bbox_to_anchor=(0.5, 1.2), fancybox=True, shadow=False, ) if legend_on_bottom: handles, labels = ax.get_legend_handles_labels() legend_ax.set_axis_off() legend_ax.legend(handles, labels, mode='expand', ncol=3) fig.tight_layout() return fig, axes
[docs] def plot_adj_rsquared(self): """Plot adjusted :math:`R^2` as a heatmap with marginal bar and line. Returns ------- fig : matplotlib.figure.Figure figure containing plots gs : matplotlib.gridspec.GridSpec grid specification that determines locations and sizes of subplots bar, heatmap, colorbar, line : matplotlib.axes._subplots.AxesSubplot subplot objects """ import matplotlib.pyplot as plt rsq_adj = self.rsquared_adj with plt.rc_context({'font.size': 14}): fig = plt.figure(figsize=(16, 12)) gs = plt.GridSpec(2, 2, width_ratios=[13, 3], height_ratios=[7, 2]) bar = plt.subplot(gs[1]) bar.barh(self._grid.columns, rsq_adj.mean(axis=0)) heatmap = plt.subplot(gs[0], sharey=bar) heatmap_image = heatmap.imshow(rsq_adj.T, aspect='auto') heatmap.get_xaxis().set_visible(False) colorbar = plt.subplot(gs[3]) plt.colorbar(mappable=heatmap_image, cax=colorbar, aspect=0.75) line = plt.subplot(gs[2]) line.plot(rsq_adj.mean(axis=1)) plt.tight_layout() plt.margins(x=0) return fig, gs, bar, heatmap, colorbar, line
[docs] def influential_epochs(self, top=None): """Return dataframe with top influential epochs ranked by Cook's-D. Parameters ---------- top : int, optional, default None how many top epochs to return, all epochs by default Returns ------- top_epochs : pandas DataFrame dataframe with epoch_id as index and aggregated Cook's-D as values Notes ----- Cook's distance is aggregated by simple averaging across time and channels. """ return ( self.get_influence() .cooks_distance.drop(axis=0, index=1, level=1) .reset_index(level=1, drop=True) .mean(axis=0, level=1) .mean(axis=1) .sort_values(ascending=False) .to_frame(name='average_Cooks_D') .iloc[:top] )
[docs]class LMERFitGrid(FitGrid): def __or__(self, other): if not isinstance(other, self.__class__): raise FitGridError( 'Can only compare LMERFitGrid to other LMERFitGrid.' ) # figure out the situation this_fixef = self.tester.fixef.columns other_fixef = other.tester.fixef.columns same_fixef = this_fixef.equals(other_fixef) at_least_one_fit_with_REML = self.tester._REML or other.tester._REML if (not same_fixef) and at_least_one_fit_with_REML: raise FitGridError( 'Cannot compare models with different fixed effects when ' 'REML is used. For more context, see ' 'https://stats.stackexchange.com/a/116796' ) diff = self.AIC - other.AIC import matplotlib.pyplot as plt with plt.rc_context({'font.size': 14}): fig = plt.figure(figsize=(16, 12)) gs = plt.GridSpec(1, 2, width_ratios=[15, 1]) heatmap = plt.subplot(gs[0]) heatmap_image = heatmap.imshow(diff.T, aspect='auto') colorbar = plt.subplot(gs[1]) plt.colorbar(mappable=heatmap_image, cax=colorbar) return fig, gs, heatmap, colorbar