pygarv: EEG viewer ================== ``pygarv`` is a command line utility that integrates EEG data visualization with an EEG artifact screening test editor. It works somewhat OK for visualizing mkh5 files, the artifact screening is work in progress. .. _pygarv_all_views: .. figure:: ../_images/viewer_all_views.png :scale: 75 % :alt: pygarv_all_views Panel dividers slide to hide or show the different views: * :ref:`pygarv_traces` * :ref:`pygarv_data_table` * :ref:`pygarv_header` * :ref:`pygarv_dblocks` * :ref:`pygarv_epochs` * :ref:`pygarv_artifact_tests` .. _pygarv_traces: EEG waveforms -------------- .. figure:: ../_images/viewer_trace_view.png :scale: 75 % :alt: pygarv_traces EEG trace panel .. _pygarv_data_table: EEG Data table --------------- .. figure:: ../_images/viewer_dblock_table.png :scale: 75 % :alt: pygarv_data Data table panel .. _pygarv_header: Header -------- .. figure:: ../_images/viewer_headinfo_view.png :scale: 75 % :alt: pygarv_header Header data panel .. _pygarv_dblocks: Datablock directory ------------------------- .. figure:: ../_images/viewer_dblock_path_view.png :scale: 75 % :alt: pygarv_data_blocks HDF5 data groups .. _pygarv_epochs: Tagged events and epochs ------------------------- .. figure:: ../_images/viewer_epoch_table_view.png :scale: 75 % :alt: pygarv_epochs Epochs and experimental event tags .. _pygarv_artifact_tests: EEG artifact screening test editor ----------------------------------- .. figure:: ../_images/viewer_pygarv_view.png :scale: 75 % :alt: pygarv_artifact_tests Artifact screening tests EEG artifacts in `mkh5` files are tagged and tracked not deleted. A dedicated ``pygarv`` 64-bit integer column alongside the EEG and event codes is default 0 (== good) at every data block sample. A sequence of user-specified Go-No-Go artifact tests is read from a YAML format text file, stored in the data block header, and the tests swept across the data. At samples where the *n* -th test fails, bit *n* of the ``pygarv`` integer is set high. Any non-zero value in the ``pygarv`` column indcates an artifact and the integer value can be decoded into the indexes of the failed tests. In combination with the test specifications stored in the header this can be use to reconstruct exactly which tests failed at each sample. Since the pygarv column travels with the EEG data, the artifact status of every data point is available during subsequent analysis. To streamline the EEG screening process, the pygarv dashboard integrates a test editor that can import, edit, visualize, and export the YAML files. This is a convenience, the YAML files can be generated programmatically or typed and edited by hand.